Relaxation of variational problems in two-dimensional nonlinear elasticity
نویسندگان
چکیده
منابع مشابه
GENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM
Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic ...
متن کاملON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY
The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...
متن کاملTwo-dimensional Steady-state Oscillation Problems of Anisotropic Elasticity
The paper deals with the two-dimensional exterior boundary value problems of the steady-state oscillation theory for anisotropic elastic bodies. By means of the limiting absorption principle the fundamental matrix of the oscillation equations is constructed and the generalized radiation conditions of Sommerfeld–Kupradze type are established. Uniqueness theorems of the basic and mixed type bound...
متن کاملElzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions
In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...
متن کاملRelaxation and Regularization of Nonconvex Variational Problems
We are interested in variational problems of the form min ∫ W (∇u) dx, with W nonconvex. The theory of relaxation allows one to calculate the minimum value, but it does not determine a well-defined “solution” since minimizing sequences are far from unique. A natural idea for determining a solution is regularization, i.e. the addition of a higher order term such as ǫ|∇∇u|2. But what is the behav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata
سال: 2006
ISSN: 0373-3114,1618-1891
DOI: 10.1007/s10231-005-0177-1